Задание № 10. Решение задач в Microsoft Excel: Встроенный модуль «Поиск решения»

1. Ознакомьтесь с задачей линейного программирования, представленной ниже.

<u>Задача</u> 1. Для приготовления смолы необходимо составить смесь, пользуясь набором из трех компонентов: *А*, *B*, *C*, ресурсы которых ограничены соответственно 20, 25 и 10 кг в расчете на одну загрузку. При этом требуется, чтобы смесь содержала необходимое количество химических добавок *D* (не менее 20 г), *E* (не менее 2000 г), *F* (не менее 100 г) и при этом оказалась наиболее выгодной по себестоимости.

Следующая таблица характеризует содержание химических добавок *D*, *E* и *F* в одном килограмме каждого компонента и себестоимость компонентов *A*, *B* и *C*.

Виды компонентов	Содержан	Себестоимость 1 кг компонента		
	D	Ε	F	
Α	0,5	40	5	2
В	0,2	10	4	1
С	1,0	200	3	4

Для составления математической модели обозначим через x_1 , x_2 и x_3 соответственно количество килограммов компонента A, компонента B и компонента C, которые составляют искомую смесь. Тогда на основании условий задачи данные переменные должны удовлетворять следующим ограничительным условиям:

$$\begin{cases} 0.5x_1 + 0.2x_2 + x_3 \ge 20\\ 40x_1 + 10x_2 + 200x_3 \ge 2000\\ 5x_1 + 4x_2 + 3x_3 \ge 100. \end{cases}$$

Введем ограничения по ресурсам согласно условию:

$$x_1 \leq 20; \quad x_2 \leq 25; \quad x_3 \leq 10.$$

Кроме того, переменные должны быть неотрицательными, т.е.

$$x_1 \ge 0; \quad x_2 \ge 0; \quad x_3 \ge 0.$$

Очевидно, существует множество решений системы неравенств. Необходимо выбрать тот состав смеси, который обладает наименьшей себестоимостью, т.е.

$$Z = 2x_1 + x_2 + 4x_3 = min$$

Рассмотрите модуль «Поиск решения» (Сервис → Поиск решения).
 (При отсутствии модуля его необходимо подключить при помощи меню «Сервис → Надстройки».)

В окно «Установить целевую ячейку» вводится адрес целевой функции, которая стремится к какому-либо значению (в нашем случае – к минимальному). В окно «Изменяя ячейки» вводятся адреса ячеек, которые отведены под искомые значения переменных. В окно «Ограничения» добавляются все необходимые условия.

Обратите внимание на возможность изменения параметров поиска решений параметры
в указанном модуле.

3. Решите в Excel при помощи модуля «Поиск решения» представленную выше задачу:

	Α	В	С	D	E	F	G
1							
2			D	Е	F	Себестоимость 1 кг компонента	Ограничения по запасам
3		А	0,5	40	5	2	20
4		В	0,2	10	4	1	25
5		С	1	200	3	4	10
6		Ограничения по добавкам	20	2000	100		
7							
8				A	X1=	20	
9				В	X2=	0	
10				С	X3=	10	
11							
12		Система ограничений				Себестоимость	
13		=C3*F8+C4*F9+C5*F10				=F3*F8+F4*F9+F5*F10	
14		=D3*F8+D4*F9+D5*F10					
15		=E3*F8+E4*F9+E5*F10					
16							

4. Самостоятельно в Excel решите следующую задачу.

<u>Задача 2.</u> Для производства двух видов изделий X и Y предприятие использует три вида сырья. Известен расход сырья каждого вида на изготовление единицы продукции вида X: 1,1; 2,3; 4,9 кг соответственно, и продукции вида Y: 0,8; 5,3; 2 кг. Общий запас сырья составляет соответственно 15; 6; 8 тонн. Прибыль от реализации продукции вида X - 180 рублей, вида Y - 110 рублей. Составить оптимальный план производства изделий, обеспечивающий максимальную прибыль.